Design of a single pilot cockpit for airline operations

Abstract
Rising fuel and operating expenses for commercial airline operators coupled with a predicted pilot labor shortage drives the need for a reduction in costs while continuing to service passengers. One possible solution to reduce recurring costs and mitigate the effects of a pilot shortage is the transition to a single pilot cockpit. Three different design alternatives for implementing a single pilot cockpit in commercial domestic jetliners were identified: the no change option represented by a two pilot cockpit, a single pilot with no additional support, and a single pilot with an onboard support system that automates some of the removed copilot roles. Design alternatives were evaluated using three models: (1) life-cycle cost, (2) reliability, and the (3) processing times for flight procedures based on a human processor simulation. The lifecycle cost model was used to determine the savings generated by a single pilot cockpit. Reliability analysis was done to establish failure rates relative to the target level of safety. A human performance model was developed to evaluate the time on task for each task in the Flight Crew Operating Manual (FCOM) for each alternative. The procedure models were decomposed into component tasks and actions required to complete the procedure. The ranking of alternative designs during utility/cost analysis was found to be (1) the no change option, (2) the single pilot with an onboard support system, and (3) the single pilot with no additional support. We found a tradeoff between the two pilot utility and single pilot with onboard support through cost savings. Based on the analysis of results, the single pilot with an onboard support system was judged to have the best chance for becoming a realistic single pilot cockpit system which will reduce recurring airline operating costs, maintain or improve flight safety, and maintain airline serviceability.