A Single‐Atom Manipulation Approach for Synthesis of Atomically Mixed Nanoalloys as Efficient Catalysts

Abstract
Synthesis of well‐defined atomically mixed alloy nanoparticles on desired substrates is an ultimate goal for their practical application. Herein we report a general approach for preparing atomically mixed AuPt, AuPd, PtPd, AuPtPd NAs(nanoalloys) through single‐atom level manipulation. By utilizing the ubiquitous tendency of aggregation of single atoms into nanoparticles at elevated temperatures, we have synthesized nanoalloys on a solid solvent with CeO2 as a carrier and transition‐metal single atoms as an intermediate state. The supported nanoalloys/CeO2 with ultra‐low noble metal content (containing 0.2 wt % Au and 0.2 wt % Pt) exhibit enhanced catalytic performance towards complete CO oxidation at room temperature and remarkable thermostability. This work provides a general strategy for facile and rapid synthesis of well‐defined atomically mixed nanoalloys that can be applied for a range of emerging techniques.
Funding Information
  • National Natural Science Foundation of China (21590794 and 21771173)
  • K. C. Wong Education Foundation (GJTD-2018-09)