Abstract
The transient process by which an incompressible dissipative rotating stratified fluid adjusts to a small change in the rotation rate of its container is examined theoretically. The aim is to clarify the effects of the imposed density stratification and of the boundary condition specified for the density perturbation on the behaviour of the fluid, particularly during the time span when the adjustment is performed in a homogeneous fluid. For a weakly stratified fluid in a cylinder, it is shown how these two factors govern the nature and intensity of boundary layers on the vertical wall which close the secondary meridional circulation generated by Ekman layers along the horizontal boundaries. For a more strongly stratified fluid, the usefulness and importance of potential vorticity conservation in determining the quasi-steady motion is verified, and a calculation for a spherical container demonstrates some new features that arise only when the container boundaries are not normal or parallel to the rotation axis. It is shown that experimental results of Holton (1965) are in less good agreement with predictions of the linear theory than had been previously indicated.

This publication has 1 reference indexed in Scilit: