Computer Simulations of Self-Assembled Membranes

Abstract
Molecular dynamics simulations in three dimensions of particles that self-assemble to form two-dimensional, membrane-like objects are presented. Anisotropic, multibody forces, chosen so as to mimic real interactions between amphiphilic molecules, generate a finite rigidity and compressibility of the assembled membranes, as well as a finite line tension at their free edges. This model and its generalizations can be used to study a large class of phenomena taking place in fluctuating membranes. For instance, both fluid and solid-like phases, separated by a phase transition, are obtained and some of the large-scale properties of these membranes studied. In particular, thermal undulations of quasi-spherical fluid vesicles are analyzed, in a manner similar to recent experiments in lipid systems.