Abstract
We have investigated HLA-G mRNA expression in cells and tissues expressing the gene. This analysis has demonstrated that the HLA-G primary transcript is alternatively spliced to yield at least three distinct mature mRNAs. Sequencing of the transcripts has shown that the largest mRNA is essentially that previously characterized, encoding a leader sequence, three external domains, a transmembrane region, and a cytoplasmic sequence. Of the two smaller messages, a 900-base mRNA does not include exon 3, resulting in a predicted protein sequence with the alpha 1 and alpha 3 external domains joined. The smallest mRNA results from splicing out exons 3 and 4, connecting the alpha domain directly to the transmembrane sequence. Alternative splicing of HLA-G mRNA was found in placental tissues and in eye tissue as well as in HLA-G-transfected cell lines. In term placental tissue the smallest mRNA appeared to be more abundant than the full-length form, while in a cell line derived from an earlier developmental stage the larger form predominated. Immunoprecipitation of [35S]methionine-labeled cell lysates showed that three different HLA-G proteins were present in transfected cells, with sizes corresponding to those predicted from the three alternative mRNA sequences. These findings are discussed in terms of potential functions of the alternative HLA-G proteins.