Abstract
Formation of Mn-doped ZnSe quantum dots (Mn:ZnSe d-dots) using nucleation-doping strategy was studied systematically and optimized through greener approaches. The resulting d-dots were with high (∼50%) photoluminescence (PL) quantum yield (QY), which was achieved by the controlled formation of small-sized MnSe nanoclusters as the core and a diffused interface between the nanocluster core and the ZnSe overcoating layers. Synthesis of the d-dots under high temperatures (240−300 °C) was achieved by varying the structure of the metal carboxylate precursors, concentration of the inhibitors, free fatty acid, and concentration of the activation reagents, fatty amines. Highly emissive d-dots synthesized under desired conditions were found to be extremely stable upon thermal treatment up to the boiling point of the solvent (about 300 °C), which was quantitatively studied using in situ measurements. The PL peak of the d-dots was controllably tuned in a surprisingly large optical window, from 565 to 610 nm. These highly emissive and stable d-dots possess characteristics of practical emissive materials, especially for applications requiring high power, high concentration of emitters, and under tough conditions.