One‐Pot Triple Functionalization of Carbon Nanotubes

Abstract
Carbon nanotubes (CNTs) are very promising as carriers for the delivery of bioactive molecules. The multifunctionalization of CNTs is necessary to impart multimodalities for the development of future CNT-based multipotent therapeutic constructs. In this context, we report the first example of covalent trifunctionalization of different types of CNTs. Our strategy is a simple and efficient methodology based on the simultaneous functionalization of the nanotube surface with three different active groups. The reaction is performed in one step by arylation with diazonium salts generated in situ. The CNTs are functionalized with benzylamine moieties blocked with three different protecting groups that can be selectively removed under specific conditions. The trifunctionalized CNTs were characterized by TEM, thermogravimetric analysis, and Raman and UV/Vis/NIR spectroscopy, while the amine loading was determined by using the Kaiser test. The sequential removal of the protecting groups of the amine functions allows the grafting of the molecules of interest on the nanotube surface to be controlled.