Thermal conductance and phonon transmissivity of metal–graphite interfaces

Abstract
The thermal boundary conductances between c-axis oriented highly ordered pyrolytic graphite and several metals have been measured in the temperature range 87–300 K and are found to be similar to those of metal–diamond interfaces. The values obtained are indicative of the thermal interface conductance between metals and the sidewalls of multiwall carbon nanotubes (CNTs) and, therefore, have relevance for the accurate characterization of the thermal properties of CNTs, graphene, and the design and performance of composite materials and electronic devices based on these structures. A modified diffuse mismatch model is used to interpret the data and extract the phonon transmissivity at the interface. The results indicate that metal–graphite adhesion forces and interfacial mixing effects play important roles in determining the boundary conductance.