Use of nuclear genes for phylogeny reconstruction in plants

Abstract
Molecular data have had a profound impact on the field of plant systematics, and the application of DNA-sequence data to phylogenetic problems is now routine. The majority of data used in plant molecular phylogenetic studies derives from chloroplast DNA and nuclear rDNA, while the use of low-copy nuclear genes has not been widely adopted. This is due, at least in part, to the greater difficulty of isolating and characterising low-copy nuclear genes relative to chloroplast and rDNA sequences that are readily amplified with universal primers. The higher level of sequence variation characteristic of low-copy nuclear genes, however, often compensates for the experimental effort required to obtain them. In this review, we briefly discuss the strengths and limitations of chloroplast and rDNA sequences, and then focus our attention on the use of low-copy nuclear sequences. Advantages of low-copy nuclear sequences include a higher rate of evolution than for organellar sequences, the potential to accumulate datasets from multiple unlinked loci, and bi-parental inheritance. Challenges intrinsic to the use of low-copy nuclear sequences include distinguishing orthologous loci from divergent paralogous loci in the same gene family, being mindful of the complications arising from concerted evolution or recombination among paralogous sequences, and the presence of intraspecific, intrapopulational and intraindividual polymorphism. Finally, we provide a detailed protocol for the isolation, characterisation and use of low-copy nuclear sequences for phylogenetic studies.