Transport in Supported Polyelectrolyte Brushes

Abstract
Functional polymers have a wide variety of applications ranging from energy storage to drug delivery. For energy storage applications, desirable material properties include low cost, high charge storage and/or mobility, and low rates of degradation. Isotropic thin films have been used for many of these types of applications, but research suggests that different structures such as polymer brushes can improve charge transport by an order of magnitude. Supported polymer brush structures produced by “grafting-from” polymerization methods offer a framework for a controlled study of these materials on the molecular scale. Using these materials, researchers can study the basis of hindered diffusion because they contain a relatively homogeneous polyelectrolyte membrane. In addition, researchers can use fluorescent molecular probes with different charges to examine steric and Coulombic contributions to transport near and within polymer brushes. In this Account, we discuss recent progress in using fluorescence correlation spectroscopy, single-molecule polarization-resolved spectroscopy, and a novel three-dimensional orientational technique to understand the transport of charged dye probes interacting with the strong polyanionic brush, poly(styrene sulfonate). Our preliminary experiments demonstrate that a cationic dye, Rhodamine 6G, probes the brush as a counterion, and diffusion is therefore dominated by Coulombic forces, which results in a 10 000-fold decrease in the diffusion coefficient in comparison with free diffusion. We also support our experimental results with molecular dynamics simulations. Further experiments show that, up to 50% of the time, Rhodamine 6G translates within the brush without significant rotational diffusion, which indicates a strong deviation from Fickian transport mechanisms (in which translational and rotational diffusion are related directly through parameters such as chemical potential, size, solution viscosity, and thermal properties). To understand this oriented transport, we discuss the development of an experimental technique that allows us to quantify the three-dimensional orientation on the time scale of intrabrush transport. This method allowed us to identify a unique orientational transport direction for Rhodamine 6G within the poly(styrene sulfonate) brush and to report preliminary evidence for orientational dye “hopping”.