Hierarchies without symmetries from extra dimensions

Abstract
It is commonly thought that small couplings in a low-energy theory, such as those needed for the fermion mass hierarchy or proton stability, must originate from symmetries in a high-energy theory. We show that this expectation is violated in theories where the standard model fields are confined to a thick wall in extra dimensions, with the fermions “stuck” at different points in the wall. Couplings between them are then suppressed due to the exponentially small overlaps of their wave functions. This provides a framework for understanding both the fermion mass hierarchy and proton stability without imposing symmetries, but rather in terms of higher dimensional geography. A model independent prediction of this scenario is non-universal couplings of the standard model fermions to the “Kaluza-Klein” excitations of the gauge fields. This allows a measurement of the fermion locations in the extra dimensions at the CERN LHC or NLC if the wall thickness is close to the TeV scale.