Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice

Abstract
Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI) develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus, targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C. difficile disease and potentially other forms of intestinal dysbiosis. Pathological imbalances within the intestinal microbiota, termed dysbiosis, are often associated with chronic Clostridium difficile infections in humans. We show that infection of mice with the healthcare pathogen C. difficile leads to persistent intestinal dysbiosis that is associated with chronic disease and a highly contagious state. Using this model we rationally designed a simple mixture of phylogenetically diverse intestinal bacteria that can disrupt intestinal dysbiosis and as a result resolve disease and contagiousness. Our results validate the microbiota as a viable therapeutic target and open the way to rationally design bacteriotherapy to treat chronic C. difficile infections and potentially other forms of persistent dysbiosis.