Role of real time three-dimensional transesophageal echocardiography in guidance of interventional procedures in cardiology

Abstract
3D TEE was developed approximately 25 years ago with the aim of providing additional anatomical detail and improved spatial relationships, not previously seen with transthoracic two-dimensional echocardiography. Until the introduction of the matrix TEE probe 2 years ago, 3D TEE was performed with a multiplane probe using a rotational approach for sequential data acquisition, gated to ECG and respiration. From a transesophageal fixed acoustic window, 2D images were collected at small angular increments, post-processed offline and converted into a Cartesian coordinate system to obtain conical volume datasets. From these data, any desired cut-plane could be derived and structures of interest rendered. Unfortunately, this methodology was limited by the need for multiple image sampling resulting in lengthy data acquisition times and frequent radial artifacts. As a consequence, this methodology has not been routinely embraced in clinical practice and was predominantly used for research purposes. To overcome these limitations and introduce …