Abstract
We develop a theory of difference approximations to absorbing boundary conditions for the scalar wave equation in several space dimensions. This generalizes the work of the author described in [8]. The theory is based on a representation of analytical absorbing boundary conditions proven in [8]. These conditions are defined by compositions of first-order, one-dimensional differential operators. Here the operators are discretized individually, and their composition is used as a discretization of the boundary condition. The analysis of stability and reflection properties reduces to separate studies of the individual factors. A representation of the discrete boundary conditions makes it possible to perform the analysis geometrically, with little explicit calculation.