Abstract
In this paper, a new denoising method is proposed for hyperspectral data cubes that already have a reasonably good signal-to-noise ratio (SNR) (such as 600 : 1). Given this level of the SNR, the noise level of the data cubes is relatively low. The conventional image denoising methods are likely to remove the fine features of the data cubes during the denoising process. We propose to decorrelate the image information of hyperspectral data cubes from the noise by using principal component analysis (PCA) and removing the noise in the low-energy PCA output channels. The first PCA output channels contain a majority of the total energy of a data cube, and the rest PCA output channels contain a small amount of energy. It is believed that the low-energy channels also contain a large amount of noise. Removing noise in the low-energy PCA output channels will not harm the fine features of the data cubes. A 2-D bivariate wavelet thresholding method is used to remove the noise for low-energy PCA channels, and a 1-D dual-tree complex wavelet transform denoising method is used to remove the noise of the spectrum of each pixel of the data cube. Experimental results demonstrated that the proposed denoising method produces better denoising results than other denoising methods published in the literature.