A Raman Waveguide Detector for Liquid Chromatography

Abstract
A novel real-time liquid core Raman waveguide detector designed for liquid chromatographic applications is described. The Raman waveguide detector provides enhanced selectivity over typical high-performance liquid chromatography (HPLC) detectors. The waveguide detector also greatly improves the sensitivity of a typical Raman measurement without resorting to surface enhancement or resonance approaches and is compatible with the typical peak width volumes eluted by microbore and minibore HPLC (packed 1−2-mm-i.d. columns). Detection limit enhancements of over 1000-fold have been achieved for the measurement of alcohols in the aqueous phase with the Raman cell utilizing liquid core waveguide technology. The liquid core waveguides demonstrated in this study were constructed using Teflon AF 2400 tubing with a refractive index of 1.29. The low refractive index of the polymer material allowed HPLC separations with Raman detection to be performed with an aqueous mobile phase. A calibration curve for aqueous solutions of 2-propanol was generated and a limit of detection (LOD) of 2 ppm was determined. The Raman waveguide detector is demonstrated for the HPLC analysis of alcohol test mixtures, with LODs in the low-ppm range at the detector. By coupling the temporal separation achieved by HPLC with the vibrational information gleaned from Raman detection, an information-rich multivariate data matrix is obtained that can be deconvoluted to provide chemical speciation even when the HPLC resolution is poor. In this paper, we will discuss the physical and optical design of the Raman waveguide detector and the demonstration of the detector for HPLC detection.