Growth, development, and gene expression by in vivo‐ and in vitro‐produced day 7 and 16 bovine embryos

Abstract
The effects of the embryo production system on growth and transcription rate of day 7 and 16 bovine embryos were investigated. In vivo- (controls) and in vitro-produced (IVP) embryos were transferred to female recipients on day 7 of development, and were allowed to develop in a synchronous uterine environment to day 16. Embryonic transcripts for insulin-like growth factors-1 and -2 (IGF-1 and -2), their receptors (IGF-1r and -2r), facilitative glucose transporters-1 and -3 (Glut-1 and -3), and interferon-τ (IFN-τ) were determined by real-time quantitative PCR (TaqMan®); gender diagnosis was performed on day 16 concepti only. On day 7, IVP embryos presented lower mRNA levels than controls (P < 0.05), but these differences were generally reduced on day 16. No IGF-1 transcripts were detected on day 7, but a low IGF-1 mRNA level was observed in day 16 embryos. In the IVP group, IFN-τ mRNA levels were lower on day 7 (P < 0.05), but higher than controls on day 16 (P < 0.05). Control embryos showed a temporal decrease in the relative transcription from day 7 to 16 (P < 0.05), except IGF-1 mRNA. On day 16, IVP concepti were shorter and displayed smaller embryonic discs (P < 0.05). Female concepti were generally smaller than males, and IGF-2r mRNA and growth were negatively correlated. The in vitro production of bovine embryos negatively affected the amount of gene expression on day 7 and the rate of development on day 16. Physical traits and transcriptional activity on day 16 were associated with one another, which appeared to be significant for growth and development. Mol. Reprod. Dev. 63: 318–328, 2002.

This publication has 59 references indexed in Scilit: