Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnO Nanowires

Abstract
Pure and Co-doped ZnO nanowire arrays were grown on polished silicon substrates with high rates via an electrochemical technique. A negative potential applied to the substrate not only enhances the nucleation density on polished substrates more than 4 orders of magnitude but also increases the growth rate by 35 times over that obtained in the absence of the potential. Furthermore, incorporation of metallic dopants in ZnO nanowires was demonstrated in the low-temperature process. This fast growth technique provides a route to fabrication of low-cost highly oriented ZnO nanowires on polished substrate for industrial applications.