HYDRODYNAMICS OF LAMINAR LIQUID JETS. EXPERIMENTAL STUDY AND COMPARISON WITH TWO MODELS

Abstract
Laminar jets of Newtonian liquids issuing from long vertical cylindrical nozzles and falling freely through stagnant air were studied experimentally for Reynolds numbers between 300 and 1000. Jet diameters were measured from still photographs, and radial distributions of axial velocity were obtained by laser Doppler anemometry. The effect of nozzle diameter, fluid viscosity and surface tension was investigated. The experimental results were compared with numerical solutions of the Protean coordinate model developed by Duda and Vrentas. The boundary layer simplifications were confirmed to be valid only for the downstream region of the jet and for Reynolds numbers greater than 1000. The experimental diameters were also compared with predictions from a form of the Bernoulli equation with a surface tension term. The asymptotic validity of the model was confirmed, provided that the dissipation term arising from fluid viscosity could be neglected. Neither model correlated the jet formation region satisfactorily. For this region, an empirical correlation was developed which improves the diameter prediction and is complementary of either model.