Screening Chemicals for Persistence in the Environment

Abstract
A method is suggested for rapid screening of chemicals for persistence in the environment. Physical−chemical equilibrium partitioning information between air, water, and octanol are used as a first screen to identify the media for which degradation half-lives are required and those for which half-lives may be unnecessary. An overall persistence under equilibrium conditions is then estimated using half-lives in air, water, soil, and sediment using a steady-state mass balance model. A graphical technique to identify the key half-lives is demonstrated using 233 chemicals. For chemicals of more extreme partitioning properties, some half-lives may not be needed.