Abstract
The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by using a Regional Climate Model [fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)–Noah land surface model] to downscale the NCEP–NCAR reanalysis. Using the Iterative Self-Organizing Data Analysis Techniques (ISODATA) clustering algorithm, the 200 largest precipitation events, occurring from 1990 through 1994, were grouped into classes based on the similarity of their water vapor fluxes. Results indicate that, while southerly fluxes were dominant in 24% of tested events, these events produced 43% of the total precipitation produced by the 200 largest events. Thus, while the majority of precipitation events occurring in the Fertile Crescent involve significant water vapor advected from the west, those events that included southerly fluxes produced much larger precipitation totals. This suggests that changes that affect these southerly fluxes more than the westerly fluxes (e.g., changes in the Indian monsoon, movement of the head of the Persian Gulf, etc.) may have a relatively strong affect on the total precipitation falling in the Fertile Crescent even though they affect relatively few precipitation events. To obtain a clearer view of the precipitation mechanisms, the authors used a linear model, along with the estimated water vapor fluxes, to downscale from 25 to 1 km. The result shows a spectrum of mountain scales not seen in the regional model, exerting tight control on the precipitation pattern.