Prolactin induces MFG-E8 production in macrophages via transcription factor C/EBPβ-dependent pathway

Abstract
The lactogenic hormone prolactin (PRL) regulates milk protein gene expression in mammary glands. To maintain homeostatic balance in the body, milk fat globule epidermal growth factor 8 (MFG-E8) is vital for phagocytic clearance of apoptotic cells. We investigated the effects of PRL on MFG-E8 expression in macrophages by evaluating its promoter function. Macrophages were stimulated with PRL, and the expression of MFG-E8 was determined using real-time PCR and Western blotting. The role of MFG-E8 on phagocytosis of apoptotic cells in PRL-treated macrophages was assessed using microscopy, while the response of PRL to MFG-E8 expression was evaluated using luciferase assay. Following treatment with PRL, significant up-regulations of the PRL receptor and MFG-E8 were observed in macrophages, though PRL-treated macrophages more efficiently engulfed apoptotic cells. The results of MFG-E8 promoter analysis showed considerable up-regulation of promoter activity in macrophages following PRL treatment and results from mutation analysis of the MFG-E8 promoter suggested that the C/EBPβ binding site was responsible for PRL-induced activation of the MFG-E8 promoter. C/EBPβ activity was found to be up-regulated in PRL-treated cells as revealed by an electrophoretic mobility shift assay (EMSA). In conclusion, PRL is a potent inducer of MFG-E8 expression in macrophages, while its effect is mediated by the presence of a responsive element in the MFG-E8 promoter.