Two-parameter discontinuity-induced bifurcation curves in a ZAD-strategy-controlled dc-dc buck converter

Abstract
The dynamics of a zero-average dynamic strategy controlled dc-dc Buck converter, modelled by a set of differential equations with discontinuous right-hand side is studied. Period-doubling and corner-collision bifurcations are found to occur close to each other under small parameter variations. Closer examination of the parameter space leads to the discovery of a novel bifurcation. This type of bifurcation has not been reported so far in the literature and it corresponds to a corner-collision bifurcation of a nonhyperbolic cycle. The bifurcation boundaries are computed analytically in this paper and the system dynamics are unfolded close to the novel bifurcation point.