Abstract
Aims: 3,4-Methylenedioxymethamphetamine (MDMA) can affect both neurotransmitter and neurohormonal activity. This review will debate the role of the metabolic activation hormone cortisol for the psychobiological effects of ecstasy/MDMA. Methods: The empirical literature on cortisol release following acute MDMA administration and cortisol functioning in drug-free recreational ecstasy/MDMA users will be reviewed. This will be followed by an overview of cortisol as a bioenergetic stress neurohormone, and a debate on how it could be modulating the acute and chronic psychobiological effects of MDMA. Results: Cortisol release is increased by stimulatory factors, including physical activity, thermal stress and stimulant drugs. In laboratory studies MDMA leads to an acute cortisol increase of around 150% in sedentary humans. In MDMA-using dance clubbers, the cortisol levels are increased by around 800%, possibly due to the combined factors of stimulant drug, physical exertion and psychosocial stimulation. Regular ecstasy/MDMA users also demonstrate changes in baseline cortisol levels and cortisol reactivity, with compromised hypothalamic-pituitary-adrenal activity. Nonpharmacological research has shown how cortisol is important for psychological aspects such as memory, cognition, sleep, impulsivity, depression and neuronal damage. These same functions are often impaired in recreational ecstasy/MDMA users, and cortisol may be an important modulatory co-factor. Conclusions: The energizing hormone cortisol is involved in the psychobiology of MDMA, probably via its effects on energy metabolism. Acute cortisol release may potentiate the stimulating effects of MDMA in dance clubbers. Chronically, cortisol may contribute to the variance in functional and structural consequences of repeated ecstasy usage.

This publication has 96 references indexed in Scilit: