A Numerical Method For Simultaneous Prediction of Metal Flow and Temperatures in Upset Forging of Rings

Abstract
In this study, the interdependence between temperatures and metal flow during upset forging of rings has been investigated. An improved upper-bound analysis has been developed to predict metal flow and temperatures during ring compression. The metal flow and temperatures are considered to influence each other and are estimated at small discrete steps of deformation. Good correlation was found between predicted profiles of the bulged ring surfaces and the experimental results. The analysis and the experimental data show the effects of (a) friction on temperatures, (b) time of contact between the ring and the dies on temperatures and metal flow, and (c) ram speed upon metal flow and temperature. The simulation of the ring test, presented in this paper, is expected to allow a more precise interpretation of experimental results obtained in ring compression tests, especially in warm and hot deformation ranges.