Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping In Irrigated Wheat Fields of a Semi-Arid Region

Abstract
The aim of this study was to combine the FAO-56 dual approach and remotely-sensed data for mapping water use (ETc) in irrigated wheat crops of a semi-arid region. The method is based on the relationships established between Normalized Difference Vegetation Index (NDVI) and crop biophysical variables such as basal crop coefficient, cover fraction and soil evaporation. A time series of high spatial resolution SPOT and Landsat images acquired during the 2002/2003 agricultural season has been used to generate the profiles of NDVI in each pixel that have been related to crop biophysical parameters which were used in conjunction with FAO-56 dual source approach. The obtained results showed that the spatial distribution of seasonal ETc varied between 200 and 450 mm depending to sowing date and the development of the vegetation. The validation of spatial results showed that the ETc estimated by FAO-56 corresponded well with actual ET measured by eddy covariance system over test sites of wheat, especially when soil evaporation and plant water stress are not encountered.