Abstract
Respiratory epithelial cells play an active part in the host response to respiratory pathogens, such as Streptococcus pneumoniae , by releasing chemokines responsible for neutrophil recruitment. In order to investigate the role of specific pneumococcal virulence factors in eliciting CXC chemokine responses, type II pneumocytes (A549) and nasopharyngeal cells (Detroit-562) were infected with S. pneumoniae D39 or mutants lacking choline-binding protein A (CbpA), pneumococcal surface protein A (PspA), or specific domains thereof. In response to wild-type D39, both A549 and Detroit-562 cells showed a significant increase in CXC chemokine mRNA and interleukin-8 protein. This response was increased twofold when a cbpA deletion mutant (ΔCbpA) was used, suggesting that CbpA inhibits CXC chemokine induction. All three N-terminal domains of CbpA are required for this effect, as in-frame deletion of the respective region of cbpA had the same effect on the CXC chemokine response as deletion of cbpA altogether. Infection with a pspA deletion mutant (ΔPspA) led to a twofold decrease in the CXC chemokine response of A549 but not Detroit-562 cells, compared to infection with D39 at 2 h. Thus, PspA appears to have the ability to stimulate early CXC chemokine release from A549 cells. Deletion of the region of pspA encoding the first N-terminal α-helical domain reduced the ability of S. pneumoniae to elicit a chemokine response to the same degree as deletion of pspA altogether. Thus, the N termini of CbpA and PspA exert differential effects on CXC chemokine induction in epithelial cells infected with S. pneumoniae .

This publication has 37 references indexed in Scilit: