α‐Linolenic Acid Dietary Deficiency Alters Age‐Related Changes of Dopaminergic and Serotoninergic Neurotransmission in the Rat Frontal Cortex

Abstract
The effects of alpha-linolenic acid diet deficiency on rat dopaminergic and serotoninergic neurotransmission systems were investigated in the frontal cortex, striatum, and cerebellum of male rats 2,6,12, and 24 months of age. The diet deficiency induced severe decrease in the 22:6n-3 fatty acid levels in all regions and a compensatory increase in n-6 fatty acid levels. A recovery in the levels of 22:6n-3 was observed in deficient rats between 2 and 12 months of age; however, this recovery was lower in frontal cortex than in striatum and cerebellum. In the striatum and cerebellum, dopaminergic and serotoninergic receptor densities and endogenous dopamine and serotonin levels were affected by aging regardless of the diet. In contrast, a 40-75% lower level of endogenous dopamine in the frontal cortex occurred in deficient rats according to age. The deficiency also induced an 18-46% increase in serotonin 5-HT2 receptor density in the frontal cortex during aging, without variation in endogenous serotonin level, and a 10% reduction in density of dopaminergic D2 receptors. Monoamine oxidase-A and -B activities showed specific age-related variations but regardless of the diet. Our results suggest that a chronically alpha-linolenic-deficient diet specifically affects the monoaminergic systems in the frontal cortex.
Keywords