Hydrocarbon proton conducting polymers for fuel cell catalyst layers

Abstract
Proton exchange membrane fuel cells (PEMFCs) employing proton conducting membranes are promising power sources for automotive applications. Perfluorosulfonic acid (PFSA) ionomer represents the state-of-the-art polymer used in both the membrane and catalyst layer to facilitate the transport of protons. However, PFSA ionomer is recognized as having significant drawbacks for large-scale commercialization, which include the high cost of synthesis and use of fluorine-based chemistry. According to published research much effort has been directed to the synthesis and study of non-PFSA electrolyte membranes, commonly referred to as hydrocarbon membranes, which has led to optimism that the less expensive proton conducting membranes will be available in the not-so-distant future. Equally important, however, is the replacement of PFSA ionomer in the catalyst layer, but in contrast to membranes, studies of catalyst layers that incorporate a hydrocarbon polyelectrolyte are relatively sparse and have not been reviewed in the open literature; despite the knowledge that hydrocarbon polyelectrolytes in the catalyst layer generally lead to a decrease in electrochemical fuel cell kinetics and mass transport. This review highlights the role of the solid polymer electrolyte in catalyst layers on pertinent parameters associated with fuel cell performance, and focuses on the effect of replacing perfluorosulfonic acid ionomer with hydrocarbon polyelectrolytes. Collectively, this review aims to provide a better understanding of factors that have hindered the transition from PFSA to non-PFSA based catalyst layers.