Abstract
The spatial properties of human binocular mechanisms were investigated using the technique of subthreshold summation. Isolation of binocular mechanisms was achieved by means of interocular stimulus presentation. The contrast detection threshold for a sinusoidal test grating viewed by one eye was found to be reduced by a subthreshold grating of the same spatial frequency and orientation seen by the other eye. The interaction between the gratings was approximately linear. Threshold increased as the spatial frequencies or orientations of test and subthreshold gratings were made increasingly different. Spatial stimulus specificities measured in this way were as great for interocular presentation as for simultaneous monocular presentation. The results suggest that human contrast sensitivity for gratings may depend upon binocularly-activated neurones similar to those found in cat and monkey visual cortex.