Hidden Markov Model-based Tool Wear Monitoring in Turning

Abstract
This paper presents a new modeling framework for tool wear monitoring in machining processes using hidden Markov models (HMMs). Feature vectors are extracted from vibration signals measured during turning. A codebook is designed and used for vector quantization to convert the feature vectors into a symbol sequence for the hidden Markov model. A series of experiments are conducted to evaluate the effectiveness of the approach for different lengths of training data and observation sequence. Experimental results show that successful tool state detection rates as high as 97% can be achieved by using this approach.