Automated surveillance of 911 call data for detection of possible water contamination incidents

Abstract
Background Drinking water contamination, with the capability to affect large populations, poses a significant risk to public health. In recent water contamination events, the impact of contamination on public health appeared in data streams monitoring health-seeking behavior. While public health surveillance has traditionally focused on the detection of pathogens, developing methods for detection of illness from fast-acting chemicals has not been an emphasis. Methods An automated surveillance system was implemented for Cincinnati's drinking water contamination warning system to monitor health-related 911 calls in the city of Cincinnati. Incident codes indicative of possible water contamination were filtered from all 911 calls for analysis. The 911 surveillance system uses a space-time scan statistic to detect potential water contamination incidents. The frequency and characteristics of the 911 alarms over a 2.5 year period were studied. Results During the evaluation, 85 alarms occurred, although most occurred prior to the implementation of an additional alerting constraint in May 2009. Data were available for analysis approximately 48 minutes after calls indicating alarms may be generated 1-2 hours after a rapid increase in call volume. Most alerts occurred in areas of high population density. The average alarm area was 9.22 square kilometers. The average number of cases in an alarm was nine calls. Conclusions The 911 surveillance system provides timely notification of possible public health events, but did have limitations. While the alarms contained incident codes and location of the caller, additional information such as medical status was not available to assist validating the cause of the alarm. Furthermore, users indicated that a better understanding of 911 system functionality is necessary to understand how it would behave in an actual water contamination event.