Abstract
This study analyzes turbulence data collected over a grassland site in the nocturnal boundary layer. Examination of the dependence of the nocturnal boundary layer on stability suggests three regimes: a) the weakly stable case, b) a transition stability regime where many of the variables change rapidly with increasing stability and c) the very stable case. The value of z/L where the downward heat flux is a maximum defines the stability boundary between the weakly stable and transition regimes, where L is the Obukhov length. In the present analysis, the downward heat flux reaches a maximum at z/L approximately equal to 0.05 for 10 m, although comparison with other data indicates that this is not a universal value. For weaker stability, the heat flux decreases with decreasing z/L due to weaker temperature fluctuations. In the transition stability regime, the heat flux decreases rapidly with increasing stability due to restriction of vertical velocity fluctuations by the increasing stratification. For weakly stable conditions, the variances scale according to Monin-Obukhov similarity theory. For very stable conditions, the variances are contaminated by non-turbulent horizontal motions and do not follow the scaling laws. An alternative length scale based on variances is developed which explains more of the variance of the transfer coefficients compared to the Obukhov length.

This publication has 28 references indexed in Scilit: