Correlation between chemical structure and biological activities of Porphyromonas gingivalis synthetic lipopeptide derivatives

Abstract
We recently separated a PG1828-encoded triacylated lipoprotein (Pg-LP), composed of two palmitoyl and one pentadecanoyl groups at the N-terminal of glycerocysteine from Porphyromonas gingivalis, a periodontopathic bacteria, and found that Pg-LP exhibited definite biological activities through Toll-like receptor (TLR) 2. In the present study, we synthesized 12 different Pg-LP N-terminal peptide moieties (PGTP) using four combinations of glyceryl (R and S) and cysteinyl (l and d) stereoisomers, and three different acyl group regioisomers, N-pentadecanoyl derivative (PGTP1), S-glycero 2-pentadecanoyl derivative (PGTP2) and S-glycero 3-pentadecanoyl derivative (PGTP3). All the PGTP compounds (RL, SL, SD, RD) tested showed TLR2-dependent cell activation. The activating capacities of the PGTP-R compounds were more potent than those of the PGTP-S compounds, whereas there were no differences between the PGTP-L and -D compounds. Furthermore, the production of interleukin (IL)-6 following stimulation with the PGTP1-RL, PGTP2-RL and PGTP3-RL compounds was impaired in peritoneal macrophages from TLR2 knock-out (KO), but not those from TLR1 KO or TLR6 KO mice. These results suggest that P. gingivalis triacylated lipopeptides are capable of activating host cells in a TLR2-dependent and TLR1-/TLR6-independent manner, and the fatty acid residue at the glycerol position in the PGTP molecule plays an important role in recognition by TLR2.