Feeding level and diet quality influence trophic shift of c and n isotopes in nile tilapia (oreochromis niloticus (L.))

Abstract
Many scientists use naturally occurring stable isotopes to reconstruct the diets of animals. However, isotopic ratios may be affected not only by the composition of the diet but also by the amount of food consumed. Thus, an experiment using tilapia (Oreochromis niloticus) was carried out to test the influence of feeding level on δ 13C and δ 15N of fish given a semi-synthetic wheat gluten/wheat starch based diet. In addition, the effect of diet quality was tested by comparing tilapia given this feed with tilapia fed a fish meal/wheat meal based diet. Forty-four tilapia were reared individually. After a prefeeding phase, fish were randomly assigned to five groups, four on the semi-synthetic diet at different feeding levels and one group on the fish meal/wheat meal based diet fed at the equivalent of the highest level of the semi-synthetic diet. The experiment lasted eight weeks. Proximate composition, gross energy content and δ 13C and δ 15N values were determined in feed and fish, for δ 13C separately in the lipids and the lipid-free matter. δ 13C in the lipids and the lipid-free matter and δ 15N of tilapia fed the semi-synthetic diet decreased significantly with increasing feeding rate. The absolute values of the trophic shift in fish fed the semi-synthetic wheat based diet were significantly higher than in fish fed the fish meal/wheat meal based diet. The different δ 13C and δ 15N values in tilapia fed the same diet at different feeding levels and the influence of feed quality on the trophic shift add to the uncertainty involved in the use of stable isotopes in ecological research.