Synthesis of platinum/multi-wall carbon nanotube catalysts

Abstract
The purpose of this research is to investigate the feasibility of the synthesis of platinum/multi-wall carbon nanotube (Pt/MWNT) catalysts and such catalysts' application in fuel cells. The as-received MWNTs were purified and decorated by pretreatment. Infrared-spectrum indicates the carboxylic (-COOH) and carbonyl (-C=O) groups were introduced on the surface of the MWNTs after pretreatment. These functional groups will act as anchor sites for the Pt deposition. Then the Pt particles in nano scale were deposited on the surface of MWNTs by reduction of a solution of hexachloroplatinic acid. Transmission electron microscopy examination reveals that Pt particles are attached to the surface of MWNTs. If as-received MWNTs are not pretreated in the proper way, the Pt particle aggregates are mostly found on the open end of MWNTs. Occasionally Pt penetrated inside the tube of MWNTs. The relationship between the Pt particle morphology and the conditions of pretreatment and reduction reaction is discussed. After heat treatment, Pt particles recrystallized to form the Pt/MWNT catalysts. The Pt/MWNT catalysts were applied to a single cell and the test result shows a promising future of these catalysts with low Pt loading when applied in proton exchange membrane fuel cells (PEMFCs).