Intraepithelial airway dendritic cells: a distinct subset of pulmonary dendritic cells obtained by microdissection.

Abstract
Dendritic cells (DC), in general, and pulmonary DC, in particular, are a heterogeneous population of cells, their phenotype and function being dependent on their anatomic location, their state of activation, and the regulatory effect of locally secreted cytokines. Using a novel microdissection technique, the epithelium from the trachea and entire airway system was harvested, and the contained DC isolated at greater than 90% purity. The phenotype and function of these airway DC (ADC) was compared to DC isolated, at greater than 90% purity, from the parenchyma of the same lung. In contrast to lung DC (LDC), ADC did not express intercellular adhesion molecule 1 (ICAM-1) in situ, the amount of immune associated antigen (Ia) expressed was less (as determined by immunoperoxidase staining and immunopanning), and greater than 50% of ADC displayed Fc receptors (FcR). The majority of LDC were ICAM-1+, less than 5% expressed FcR, and all were intensely Ia+. Airway DC were most numerous in tracheal epithelium, but they were also present in small numbers in the epithelium of the most distal airways. Their numbers increased in all segments of the tracheobronchial epithelium in response to the administration of IFN-gamma. ADC were consistently more effective than LDC in presenting soluble (hen egg lysozyme) and particulate (heat-killed Listeria monocytogenes) antigens to antigen-sensitized T cells. By contrast, LDC were significantly more efficient in stimulating the proliferation of nonsensitized T cells in an autologous mixed leukocyte reaction. These data suggest that in normal animals, intraepithelial DC of airways share many attributes with Langerhans cells of the skin. Interstitial LDC, by contrast, reside in an environment where they may be exposed to a different set of regulatory factors and where they have progressed to a more advanced stage of differentiation than ADC. Both groups of DC are, however, heterogeneous, reflecting the continuous turnover that these cells undergo in the lung.

This publication has 36 references indexed in Scilit: