Transcription of the singed-weak mutation of Drosophila melanogaster: elimination of P-element sequences by RNA splicing and repression of singed transcription in a P genetic background

Abstract
The dysgenesis-induced, hypermutable singed-weak allele has two incomplete P-elements inserted in a head-to-head configuration in the 5′ non-coding exon of the singed bristle locus of Drosophila melanogaster. In the presence of P transposase, each element excises to produce single element derivatives, singed-extreme and singed-(+), that have either an extreme bristle or wild-type phenotype, respectively. In an M background, pseudo-wild-type transcripts are made that initiate at the singed promoter, read through the insertions, and are spliced to remove the P-element sequences and part of the 5′ exon. The abundance of the pseudo-wild-type RNAs in pupae correlates with the bristle phenotype, being highest in singed-(+) and lowest in singed-extreme. Other RNAs are made that retain the insertions, or are truncated with respect to the downstream coding singed exons and have their 3′ ends within the insertions. The mutants are female-fertile in an M background but sterile in a P background where little singed RNA can be detected. Transgenes containing either a complete P-element or an incomplete P-element known as KP impair the fertility of females carrying the singed-weak mutation, suggesting that the proteins encoded by these two widely distributed P-elements may be responsible for inhibiting transcription of singed-weak in a P background.