Use of an Electronic Nose To DiagnoseMycobacterium bovisInfection in Badgers and Cattle

Abstract
It is estimated that more than 50 million cattle are infected withMycobacterium bovisworldwide, resulting in severe economic losses. Current diagnosis of tuberculosis (TB) in cattle relies on tuberculin skin testing, and when combined with the slaughter of test-positive animals, it has significantly reduced the incidence of bovine TB. The failure to eradicate bovine TB in Great Britain has been attributed in part to a reservoir of the infection in badgers (Meles meles). Accurate and reliable diagnosis of infection is the cornerstone of TB control. Bacteriological diagnosis has these characteristics, but only with samples collected postmortem. Unlike significant wild animal reservoirs ofM. bovisthat are considered pests in other countries, such as the brushtail possum (Trichosurus vulpecula) in New Zealand, the badger and its sett are protected under United Kingdom legislation (The Protection of Badgers Act 1992). Therefore, an accurate in vitro test for badgers is needed urgently to determine the extent of the reservoir of infection cheaply and without destroying badgers. For cattle, a rapid on-farm test to complement the existing tests (the skin test and gamma interferon assay) would be highly desirable. To this end, we have investigated the potential of an electronic nose (EN) to diagnose infection of cattle or badgers withM. bovis, using a serum sample. Samples were obtained from both experimentally infected badgers and cattle, as well as naturally infected badgers. Without exception, the EN was able to discriminate infected animals from controls as early as 3 weeks after infection withM. bovis, the earliest time point examined postchallenge. The EN approach described here is a straightforward alternative to conventional methods of TB diagnosis, and it offers considerable potential as a sensitive, rapid, and cost-effective means of diagnosingM. bovisinfection in cattle and badgers.