Declarative routing

Abstract
The Internet's core routing infrastructure, while arguably robust and efficient, has proven to be difficult to evolve to accommodate the needs of new applications. Prior research on this problem has included new hard-coded routing protocols on the one hand, and fully extensible Active Networks on the other. In this paper, we explore a new point in this design space that aims to strike a better balance between the extensibility and robustness of a routing infrastructure. The basic idea of our solution, which we call declarative routing , is to express routing protocols using a database query language. We show that our query language is a natural fit for routing, and can express a variety of well-known routing protocols in a compact and clean fashion. We discuss the security of our proposal in terms of its computational expressive power and language design. Via simulation, and deployment on PlanetLab, we demonstrate that our system imposes no fundamental limits relative to traditional protocols, is amenable to query optimizations, and can sustain long-lived routes under network churn and congestion.

This publication has 12 references indexed in Scilit: