Comparison of Uniaxial Wafer Bending and Contact-Etch-Stop-Liner Stress Induced Performance Enhancement on Double-Gate FinFETs

Abstract
Longitudinal piezoresistance (pi) coefficients for n- and p-type double-gate (DG) FinFETs with sidewall channels along (110) surface and (110) channel direction are measured via wafer-bending experiments (51.4 and -37 X 10 -11 Pa-1 for n- and p-FinFETs, respectively) and are found to differ from bulk Si (110) (31.2 and -71.8 X 10 -11 Pa-1 for n- and p-Si, respectively). Compressive and tensile contact-etch-stop liners (CESLs) are fabricated on DG FinFETs and are found to induce higher channel stress than in planar MOSFETs, with 30% enhancement in the saturation current for the shortest channel-length devices in both n- and p-MOSFETs, whereas the long devices show little or no enhancement. The channel-length dependence of the enhancement suggests that stress coupling into the FinFET channels from the CESL occurs via the fin extensions and not through the gate.

This publication has 17 references indexed in Scilit: