Soluble Guanylate Cyclase Activator Reverses Acute Pulmonary Hypertension and Augments the Pulmonary Vasodilator Response to Inhaled Nitric Oxide in Awake Lambs

Abstract
Background— Inhaled nitric oxide (NO) is a potent and selective pulmonary vasodilator, which induces cGMP synthesis by activating soluble guanylate cyclase (sGC) in ventilated lung regions. Carbon monoxide (CO) has also been proposed to influence smooth muscle tone via activation of sGC. We examined whether direct stimulation of sGC by BAY 41-2272 would produce pulmonary vasodilation and augment the pulmonary responses to inhaled NO or CO. Methods and Results— In awake, instrumented lambs, the thromboxane analogue U-46619 was intravenously administered to increase mean pulmonary arterial pressure to 35 mm Hg. Intravenous infusion of BAY 41-2272 (0.03, 0.1, and 0.3 mg · kg−1 · h−1) reduced mean pulmonary arterial pressure and pulmonary vascular resistance and increased transpulmonary cGMP release in a dose-dependent manner. Larger doses of BAY 41-2272 also produced systemic vasodilation and elevated the cardiac index. Nω-nitro-l-arginine methyl ester abolished the systemic but not the pulmonary vasodilator...