Banana/Glass Fiber-Reinforced Polypropylene Hybrid Composites: Fabrication and Performance Evaluation

Abstract
Hybrid composites of Polypropylene (PP) reinforced with intimately mixed short banana and glass fibers were fabricated using Haake twin screw extruder followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both the fibers into PP matrix resulted in an increase in tensile, flexural and impact strength with an increasing level of fiber content upto 30 wt% at banana: glass fiber ratio of 15:15 wt% and 2 wt% of MAPP. The rate of water absorption for the hybrid composites decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has also been analyzed to investigate the interfacial properties. An increase in the storage modulus (E′) of the treated composite indicates higher stiffness. The tan δ spectra confirms a strong influence of fiber contents and coupling agent on the α and β relaxation processes of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out employing differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) which indicated a decrease in the crystallization temperature and thermal stability of PP with the incorporation of MAPP treated banana and Glass fiber.

This publication has 38 references indexed in Scilit: