Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials

Abstract
SBA-15 mesoporous silica has been functionalized with aminopropyl groups through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES) using amphiphilic block copolymers under acidic conditions. The organic-modified SBA-15 materials have hexagonal crystallographic order, pore diameter up to 60 Å, and the content of aminopropyl groups up to 2.3 mmol g-1. The influences of TEOS prehydrolysis period and APTES concentration on the crystallographic order, pore size, surface area, and pore volume were examined. TEOS prehydrolysis prior to the addition of APTES was found essential to obtain well-ordered mesoporous materials with amino functionality. The amount of APTES incorporated in the silica framework increased with the APTES concentration in the synthesis gel, while the ordering of the mesoporous structure gradually decreased. Analysis with TG, IR, and solid state NMR spectra demonstrated that the aminopropyl groups incorporated in SBA-15 were not decomposed during the preparation procedure and the surfactant P123 was fully removed through ethanol extraction. The modified SBA-15 was an excellent base catalyst in Knoevenagel and Michael addition reactions.