Antileishmanial Chalcones: Statistical Design, Synthesis, and Three-Dimensional Quantitative Structure−Activity Relationship Analysis

Abstract
A large number of substituted chalcones have been synthesized and tested for antileishmanial and lymphocyte-suppressing activities. A subset of the chalcones was designed by using statistical methods. 3D-QSAR analyses using 67 (antileishmanial activity) and 63 (lymphocyte-suppressing activity) of the compounds for the training sets and 9 compounds as an external validation set were performed by using the GRID/GOLPE methodology. The Smart Region Definition procedure with subsequent region selection as implemented in GOLPE reduced the number of variables to approximately 1300 yielding 3D-QSAR models of high quality (lymphocyte-suppressing model, R2 = 0.90, Q2 = 0.80; antileishmanial model, R2 = 0.73, Q2 = 0.63). The coefficient plots indicate that steric interactions between the chalcones and the target are of major importance for the potencies of the compounds. A comparison of the coefficient plots for the antileishmanial effect and the lymphocyte-suppressing activity discloses significant differences which should make it possible to design chalcones having a high antileishmanial activity without suppressing the proliferation of lymphocytes.