Dielectric relaxation, modulus behavior and thermodynamic properties in [N(CH3)3H]2ZnCl4

Abstract
[N(CH3)3H]2ZnCl4 has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry and impedance spectroscopy. The [N(CH3)3H]2ZnCl4 hybrid compound is obtained by slow evaporation at room temperature and found to crystallize in the orthorhombic system with Pnma space group. Five-phase transitions at low temperature were detected by differential scanning calorimetry measurements. The analysis of Nyquist plots has revealed the contribution of three electrically active regions corresponding to the bulk mechanism, distribution of grain boundaries and electrode processes. The dielectric relaxation is described by a non-Debye model. The study of the dielectric constants ϵ′, ϵ″ and loss tangent tan (δ) with frequency exhibits a distribution of relaxation times. The complex modulus plots have confirmed the presence of grains and grain boundaries as well as a non-Debye type of relaxation in the material. Thermodynamic parameters such as the free energy for dipole relaxation ΔF, the enthalpy ΔH and the change in entropy ΔS have been determined with the help of the Eyring theory.