An x-ray CT polymer gel dosimetry prototype: II. Gel characterization and clinical application

Abstract
This article reports on the dosimetric properties of a new N-isopropylacrylamide, high %T, polymer gel formulation (19.5%T, 23%C), optimized for x-ray computed tomography (CT) polymer gel dosimetry (PGD). In addition, a new gel calibration technique is introduced together with an intensity-modulated radiation therapy (IMRT) treatment validation as an example of a clinical application of the new gel dosimeter. The dosimetric properties investigated include the temporal stability, spatial stability, batch reproducibility and dose rate dependence. The polymerization reaction is found to stabilize after 15 h post-irradiation. Spatial stability investigations reveal a small overshoot in response for gels imaged later than 36 h post-irradiation. Based on these findings, it is recommended that the new gel formulation be imaged between 15-36 h after irradiation. Intra- and inter-batch reproducibility are found to be excellent over the entire range of doses studied (0-28 Gy). A significant dose rate dependence is found for gels irradiated between 100-600 MU min⁻¹. Overall, the new gel is shown to have promising characteristics for CT PGD, however the implication of the observed dose rate dependence for some clinical applications remains to be determined. The new gel calibration method, based on pixel-by-pixel matching of dose and measured CT numbers, is found to be robust and to agree with the previously used region of interest technique. Pixel-by-pixel calibration is the new recommended standard for CT PGD. The dose resolution for the system was excellent, ranging from 0.2-0.5 Gy for doses between 0-20 Gy and 0.3-0.6 Gy for doses beyond 20 Gy. Comparison of the IMRT irradiation with planned doses yields excellent results: gamma pass rate (3%, 3 mm) of 99.3% at the isocentre slice and 93.4% over the entire treated volume.