Host PrP Glycosylation: A Major Factor Determining the Outcome of Prion Infection

Abstract
The expression of the prion protein (PrP) is essential for transmissible spongiform encephalopathy (TSE) or prion diseases to occur, but the underlying mechanism of infection remains unresolved. To address the hypothesis that glycosylation of host PrP is a major factor influencing TSE infection, we have inoculated gene-targeted transgenic mice that have restricted N-linked glycosylation of PrP with three TSE strains. We have uniquely demonstrated that mice expressing only unglycosylated PrP can sustain a TSE infection, despite altered cellular location of the host PrP. Moreover we have shown that brain material from mice infected with TSE that have only unglycosylated PrPSc is capable of transmitting infection to wild-type mice, demonstrating that glycosylation of PrP is not essential for establishing infection within a host or for transmitting TSE infectivity to a new host. We have further dissected the requirement of each glycosylation site and have shown that different TSE strains have dramatically different requirements for each of the glycosylation sites of host PrP, and moreover, we have shown that the host PrP has a major role in determining the glycosylation state of de novo generated PrPSc. In prion infection, disease requires the presence of the endogenous host-encoded prion protein, PrP. PrP is a glycoprotein (modified by the addition of sugar molecules) with two consensus sites for sugars to attach. Different PrP forms are usually observed: one diglycosylated, two different monoglycosylated, and one unglycosylated. How PrP glycosylation influences prion infection remains obscure. We have used three different murine transgenic models, developed with the gene-replacement technique, to investigate each glycotype of PrP contribution to prion diseases, or transmissible spongiform encephalopathies (TSEs). For this purpose, mice expressing mono- or unglycosylated PrP were challenged with different prion strains. Remarkably, we found that glycosylation of host PrP is not mandatory for TSE infection, because mice expressing only unglycosylated PrP were susceptible to infection and able to transmit the disease to other animals. However, we also show that host PrP glycosylation can modulate the infectious process, since strains differ in their ability to infect hosts with restricted PrP glycosylation. These results elucidate the role of glycosylation in prion infection and in particular demonstrate that strains need sugars at specific sites of host PrP to successfully induce prion disease.