Numerical Investigation of the Microstructured Optical Fiber-Based Surface Plasmon Resonance Sensor with Silver Nanolayer

Abstract
The surface plasmon resonance (SPR) sensor is proposed based on coating the inner surfaces of an index-guiding microstructured optical fiber (MOF) with a silver layer. Fiber core is surrounded by six large metallized holes which should facilitate the fabrication of the layered sensor structure and the infiltration of the analyte. The relationship between the sensitivity of SPR sensor and the refractive index of MOF material is demonstrated with finite element method (FEM). Numerical simulation results indicate that the sensitivity of SPR sensor decreases as the refractive index of the MOF material increasing and both spectral and intensity sensitivity are estimated to be 6.25×10-5 and 6.67×10-5 with low refractive index of MOF material n=1.46.