Abstract
The dynamic response of an Euler-Bernoulli beam under moving loads is studied by mode superposition. The inertial effects of the moving load are included in the analysis. The time-dependent equations of motion in modal space are solved by the method of multiple scales. Instability regions of parametric resonance are identified and the moving mass effect is shown to significantly affect the transient response of the beam. Importance of modal interaction arising out of the possible internal resonance is highlighted. While the external resonance is due to the gravity effects of the moving load, the parametric and internal resonance solely depends on the load mass parameter—ratio of the moving load mass to the beam mass. Numerical results show the influence of the load inertia terms on the beam response under either a single moving load or a series of moving loads. [S0739-3717(00)01703-7]

This publication has 11 references indexed in Scilit: